Gröbner–Shirshov Bases for Irreducible sln+1-Modules

نویسندگان

  • Seok-Jin Kang
  • Kyu-Hwan Lee
چکیده

In [10], inspired by an idea of Gröbner, Buchberger discovered an effective algorithm for solving the reduction problem for commutative algebras, which is now called the Gröbner Basis Theory. It was generalized to associative algebras through Bergman’s Diamond Lemma [2], and the parallel theory for Lie algebras was developed by Shirshov [21]. The key ingredient of Shirshov’s theory is the Composition Lemma, which turned out to be valid for associative algebras as well (see [3]). For this reason, Shirshov’s theory for Lie algebras and their universal enveloping algebras is called Gröbner–Shirshov Basis Theory. For finite-dimensional simple Lie Algebras, Bokut and Klein constructed the Gröbner–Shirshov bases explicitly [5–7]. In [4], Bokut, et al. unified the Gröbner–Shirshov basis theory for Lie superalgebras and their universal

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monomial Irreducible sln-Modules

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

متن کامل

Relative Gröbner–shirshov Bases for Algebras and Groups

The notion of a relative Gröbner–Shirshov basis for algebras and groups is introduced. The relative composition lemma and relative (composition-)diamond lemma are established. In particular, it is shown that the relative normal forms of certain groups arising from Malcev’s embedding problem are the irreducible normal forms of these groups with respect to their relative Gröbner–Shirshov bases. O...

متن کامل

Gröbner-Shirshov Bases for Lie Algebras: after A. I. Shirshov

In this paper, we review Shirshov’s method for free Lie algebras invented by him in 1962 [17] which is now called the Gröbner-Shirshov bases theory.

متن کامل

Gröbner-shirshov Bases: Some New Results

In this survey article, we report some new results of Gröbner-Shirshov bases, including new Composition-Diamond lemmas, applications of some known CompositionDiamond lemmas and content of some expository papers.

متن کامل

Gröbner-Shirshov bases for Schreier extensions of groups

In this paper, by using the Gröbner-Shirshov bases, we give characterizations of the Schreier extensions of groups when the group is presented by generators and relations. An algorithm to find the conditions of a group to be a Schreier extension is obtained. By introducing a special total order, we obtain the structure of the Schreier extension by an HNN group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000